EXERCICES Récurrence et convergence monotone

Mots clés : récurrence, majorée, minorée, bornée, croissante, décroissante, forme explicite, propriété, somme, géométrique, arithmétique, arithmético-géométrique, convergence monotone, point fixe, récurrence double

Exercice 1.

Soit (u_n) la suite définie par $u_0 = -1$ et, pour tout entier naturel n, $u_{n+1} = 0.2u_n + 0.6$. Démontrer par récurrence que, pour tout entier naturel n, $u_n \le 1$.

récurrence, majorée

Exercice 1.

On considère la propriété P_n : $u_n \le 1$.

- **Initialisation.** Pour $n_0 = 0$, $u_0 = -1$ et $-1 \le 1$, donc P_0 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que $u_k \le 1$. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que $u_{k+1} \le 1$.

On a par hypothèse de récurrence : $u_k \le 1$, donc $0.2u_k \le 0.2$, en multipliant chaque membre par le réel positif 0.2. En ajoutant 0.6 à chaque membre, on obtient :

$$0.2u_k + 0.6 \le 0.2 + 0.6$$
,

c'est-à-dire $u_{k+1} \le 0.8$. Or $0.8 \le 1$, donc $u_{k+1} \le 1$ et P_{k+1} est vraie. La propriété est donc héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire. Donc P_n est vraie pour tout entier $n \ge 0$, c'est-à-dire que $u_n \le 1$ pour tout entier naturel n.

Exercice 2.

Soit (u_n) la suite définie par $u_0 = 2$ et $u_{n+1} = \frac{u_n}{1 + u_n}$, pour tout entier naturel n.

Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$.

récurrence, minorée

Exercice 2.

On considère la propriété $P_n: u_n > 0$.

- **Initialisation.** Pour $n_0 = 0$, $u_0 = 2 > 0$. Or 2 > 0, donc P_0 est vraie.
- Hérédité. On considère un entier quelconque k ≥ 0. On suppose que la propriété P_k est vraie, c'est-à-dire que u_k > 0. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que u_{k+1} > 0.
 Par hypothèse de récurrence, u_k > 0. On a alors 1 + u_k > 1 > 0, donc u_k / (1 + u_k) > 0. Ainsi, u_{k+1} > 0 d'après la règle des signes sur un quotient. Donc P_{k+1} est vraie. La propriété est héréditaire.
- **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$.

Exercice 3.

Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout entier naturel n, $u_{n+1} = 2u_n + 4$. Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$.

récurrence, minorée

Exercice 3.

On considère la propriété P_n : $u_n > 0$.

— **Initialisation.** Pour $n_0 = 0$, $u_0 = 3$. Or 3 > 0, donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que la propriété P_k est vraie, c'est-à-dire que $u_k > 0$. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que $u_{k+1} > 0$. On a :

$$u_k > 0 \iff 2u_k > 0 \iff 2u_k + 4 > 4$$
,

donc $u_{k+1} > 4$. Or 4 > 0, donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$.

Exercice 4.

On considère la suite (u_n) définie par $u_1 = 1$ et, pour tout entier naturel $n \ge 1$, $u_{n+1} = 2u_n + 1$. Démontrer par récurrence que, pour tout entier naturel $n \ge 1$, $u_n = 2^n - 1$.

récurrence, forme explicite

Exercice 4.

On considère la propriété P_n : $u_n = 2^n - 1$.

- **Initialisation.** Pour $n_0 = 1$, $2^1 1 = u_1$, donc P_1 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que $u_k = 2^k 1$. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que

$$u_{k+1} = 2^{k+1} - 1.$$

Par hypothèse de récurrence,

$$u_k = 2^k - 1 \iff 2u_k = 2(2^k - 1) \iff 2u_k + 1 = 2(2^k - 1) + 1$$

donc

$$u_{k+1} = 2^{k+1} - 1.$$

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 1$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 1$.

Exercice 5.

Soit (u_n) la suite définie par $u_0 = 5$ et, pour tout entier naturel n, $u_{n+1} = u_n^2 + 3$. Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$.

récurrence, minorée

Exercice 5.

On considère la propriété $P_n: u_n > 0$.

- **Initialisation.** Pour $n_0 = 0$, $u_0 = 5 > 0$, donc P_0 est vraie.
- Hérédité. On considère un entier quelconque k ≥ 0. On suppose que la propriété P_k est vraie, c'est-à-dire que u_k > 0. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que u_{k+1} > 0.
 La fonction « carrée » est strictement croissante sur [0; +∞[, donc u_k² > 0 et

$$u_k^2 > 0 \Longleftrightarrow u_k^2 + 3 > 3$$

donc $u_{k+1} > 3 > 0$. Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$.

Exercice 6.

Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = 1 + \frac{1}{u_n}$.

Démontrer par récurrence que, pour tout entier naturel $n, \frac{3}{2} \le u_n \le 2$.

récurrence, bornée

Exercice 6.

On considère la propriété P_n : $\frac{3}{2} \le u_n \le 2$.

- **Initialisation.** Pour $n_0 = 0$, $u_0 = 2$. Or $\frac{3}{2} \le 2 \le 2$, donc P_0 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire :

$$\frac{3}{2} \le u_k \le 2.$$

Comme la fonction inverse est décroissante sur $]0; +\infty[$, on a :

$$\frac{1}{2} \le \frac{1}{u_k} \le \frac{2}{3}$$
 et $1 + \frac{1}{2} \le 1 + \frac{1}{u_k} \le 1 + \frac{2}{3}$.

Donc

$$\frac{3}{2} \le u_{k+1} \le \frac{5}{3}.$$

Or $\frac{5}{3} \le 2$, donc

$$\frac{3}{2} \le u_{k+1} \le 2,$$

et donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0=0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$, c'est-à-dire $\frac{3}{2} \le u_n \le 2$.

Exercice 7.

Soit (v_n) la suite définie par $v_0=0$ et, pour tout entier naturel $n:v_{n+1}=\sqrt{0.5v_n+8}$. Démontrer par récurrence que, pour tout entier naturel $n,0\leq v_n\leq 4$.

récurrence, bornée

page 3

Exercice 7.

On considère la propriété P_n : $0 \le v_n \le 4$.

- **Initialisation.** Pour $n_0 = 0$, $v_0 = 0$ et $0 \le 0 \le 4$, donc P_0 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que la propriété P_k est vraie, c'est-à-dire que

$$0 \le v_k \le 4$$
.

On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que

$$0 \le v_{k+1} \le 4$$
.

On a:

$$0 \le v_k \le 4 \iff 0 \le 0.5 v_k \le 2 \iff 8 \le 0.5 v_k + 8 \le 10.$$

La fonction « racine carrée » est strictement croissante sur $[0; +\infty[$, donc :

$$2\sqrt{2} = \sqrt{8} \le \sqrt{0.5v_k + 8} = v_{k+1} \le \sqrt{10}.$$

Or $0 \le 2\sqrt{2} \le v_{k+1} \le \sqrt{10} \le 4$. Donc P_{k+1} est vraie. La propriété est héréditaire.

EXERCICES

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$.

Exercice 8.

Soit (u_n) la suite définie par $u_0 = 0$ et, pour tout entier naturel $n : u_{n+1} = \sqrt{2u_n + 35}$. Démontrer que cette suite est bornée par 0 et 7 et qu'elle est croissante.

récurrence, bornée, croissante

Exercice 8.

On considère la propriété P_n : $0 \le u_n \le u_{n+1} \le 7$.

— **Initialisation.** Pour $n_0 = 0$, $u_0 = 0$, $u_1 = \sqrt{2u_0 + 35} = \sqrt{35}$ et

$$0 \le 0 \le \sqrt{35} \le 7$$
.

Donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que

$$0 \le u_k \le u_{k+1} \le 7$$
.

On veut montrer que P_{k+1} est vraie.

Par hypothèse de récurrence, on a :

$$0 \le u_k \le u_{k+1} \le 7$$
.

$$0 \le u_k \le u_{k+1} \le 7 \iff 0 \le 2u_k \le 2u_{k+1} \le 14$$

$$\iff$$
 35 $\leq 2u_k + 35 \leq 2u_{k+1} + 35 \leq 49$.

La fonction « racine carrée » est strictement croissante sur $[0; +\infty[$, donc :

$$\sqrt{35} \le \sqrt{2u_k + 35} \le \sqrt{2u_{k+1} + 35} \le 7.$$

Or $0 \le \sqrt{35}$. Donc

$$0 \le u_{k+1} \le u_{k+2} \le 7$$
.

Ainsi, P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$. La suite (u_n) est bornée par 0 et 7 et elle est croissante.

Exercice 9.

La suite (u_n) est définie par $u_0 = 0$ et, pour tout entier naturel n, $u_{n+1} = \frac{1}{2 - u_n}$.

Démontrer par récurrence que, pour tout entier naturel n, $u_n = \frac{n}{n+1}$.

récurrence, forme explicite

Exercice 9.

On considère la propriété P_n : $u_n = \frac{n}{n+1}$.

— **Initialisation.** Pour $n_0 = 0$, $u_0 = 0$ et

$$\frac{0}{0+1}=0,$$

donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 1$. On suppose que P_k est vraie, c'est-à-dire que

$$u_k = \frac{k}{k+1}.$$

On veut démontrer que P_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = \frac{k+1}{k+2}.$$

Par hypothèse de récurrence,

$$u_k = \frac{k}{k+1} \iff -u_k = -\frac{k}{k+1}$$

$$\iff 2 - u_k = 2 - \frac{k}{k+1}$$

$$\iff 2 - u_k = \frac{k+2}{k+1}$$

$$\iff \frac{1}{2 - u_k} = \frac{k+1}{k+2}$$

$$\iff u_{k+1} = \frac{k+1}{k+2}.$$

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier n.

Exercice 10.

Soit n un entier naturel. Vérifier que chaque propriété P_n suivante est vraie pour le rang n_0 donné.

1.
$$P_n: 1 \times 2 + 2 \times 3 + \dots + n \times (n+1) = \frac{n(n+1)(n+2)}{3}$$
; $n_0 = 1$.

2.
$$P_n: 5^n \ge 4^n + 3^n$$
; $n_0 = 2$.

propriété

Exercice 10.

1. On remplace n par n_0 et on obtient $1 \times 2 = 2$.

Par ailleurs,

$$\frac{1 \times (1+1) \times (1+2)}{3} = \frac{6}{3} = 2.$$

Ainsi, P_1 est vraie.

2. On remplace n par n_0 et on obtient $5^2 = 25$.

Par ailleurs, $4^2 + 3^2 = 25$. Donc P_2 est vraie.

Exercice 11.

Soit n un entier naturel. Vérifier que chaque propriété P_n suivante est vraie pour le rang n_0 donné.

- **1.** $P_n: 10^n 2$ est un multiple de 4; $n_0 = 1$.
- **2.** $P_n: 3^n \le n!$; $n_0 = 7$, où n! est l'entier égal au produit des entiers de 1 à n ($n! = 1 \times 2 \times \cdots \times n$).

3.
$$P_n: 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
; $n_0 = 1$.

Exercice 11.

1. On remplace n par n_0 et on obtient $10^1 - 2 = 8$, qui est bien un multiple de 4. Donc P_n est vraie pour $n_0 = 1$. Ainsi, P_1 est vraie.

2. On remplace n par n_0 et on obtient d'une part $3^7 = 2187$ et d'autre part 7! = 5040. On a bien $3^7 \le 7!$. Donc P_7 est vraie.

3. On remplace n par n_0 et on obtient $1^2 = 1$. Par ailleurs,

$$\frac{1\times2\times3}{6}=1.$$

Donc P_1 est vraie.

Exercice 12.

Soit (u_n) la suite définie par :

$$\begin{cases} u_0 = 2, \\ u_{n+1} = \frac{u_n}{1 + u_n} \end{cases}$$
 pour tout entier naturel n .

Démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$ et $u_n = \frac{2}{2n+1}$.

récurrence, forme explicite

Exercice 12.

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 2, \\ u_{n+1} = \frac{u_n}{1 + u_n} \end{cases}$$
 pour tout entier naturel n .

On veut démontrer par récurrence que, pour tout entier naturel n, $u_n > 0$ et

$$u_n = \frac{2}{2n+1}.$$

On considère la propriété P_n : $u_n > 0$ et $u_n = \frac{2}{2n+1}$.

— **Initialisation.** Pour $n_0 = 0$, on a $u_0 = 2$. D'autre part,

$$\frac{2}{2 \times 0 + 1} = \frac{2}{1} = 2.$$

Ainsi, $u_0 = \frac{2}{2 \times 0 + 1}$ et $u_0 > 0$. Donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que la propriété P_k est vraie, c'est-à-dire que

$$u_k > 0$$
 et $u_k = \frac{2}{2k+1}$.

On veut montrer que P_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} > 0$$
 et $u_{k+1} = \frac{2}{2(k+1)+1}$.

Par définition de la suite, on a :

$$u_{k+1} = \frac{u_k}{1 + u_k}.$$

En utilisant l'hypothèse de récurrence,

$$u_{k+1} = \frac{\frac{2}{2k+1}}{1 + \frac{2}{2k+1}} = \frac{\frac{2}{2k+1}}{\frac{2k+1+2}{2k+1}} = \frac{\frac{2}{2k+1}}{\frac{2k+3}{2k+1}} = \frac{2}{2k+3}.$$

Ainsi,

$$u_{k+1} = \frac{2}{2(k+1)+1}.$$

De plus, 2 > 0 et 2k + 3 > 0 pour tout entier $k \ge 0$, donc

$$u_{k+1} = \frac{2}{2k+3} > 0.$$

On a donc bien P_{k+1} vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire. Donc P_n est vraie pour tout entier naturel n. Autrement dit, pour tout entier naturel n,

$$u_n > 0$$
 et $u_n = \frac{2}{2n+1}$.

Exercice 13.

On place $10\,000 \in$ sur un compte rémunéré à 1,75% et on effectue à chaque fin d'année un retrait de $225 \in$.

On appelle c_n le capital à la fin de l'année n, après le retrait.

- **1.** Déterminer c_0 , puis c_{n+1} en fonction de c_n pour tout $n \in \mathbb{N}$.
- **2.** Démontrer que $c_n \le 10\,000$, pour tout $n \in \mathbb{N}$.
- **3.** En déduire que la suite (c_n) est décroissante.
- 4. Interpréter le résultat dans le contexte de l'exercice.

récurrence, majorée, décroissante

Exercice 13.

On place $10\,000 \in$ sur un compte rémunéré à 1,75% et on effectue à chaque fin d'année un retrait de 225 \in . On appelle c_n le capital à la fin de l'année n, après le retrait.

1. Au départ, le capital est de 10000 €. On a donc :

$$c_0 = 10000$$
.

Entre les années n et n+1, le capital est multiplié par $1,0175 = \frac{407}{400}$, puis on retire $225 \in$. On obtient, pour tout entier naturel n:

$$c_{n+1} = 1,0175 c_n - 225 = \frac{407}{400} c_n - 225.$$

- **2.** On veut démontrer que, pour tout entier naturel n, $c_n \le 10\,000$. On considère la propriété P_n : $c_n \le 10\,000$.
 - **Initialisation.** Pour $n_0 = 0$, on a

$$c_0 = 10000 \le 10000$$
,

donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que la propriété P_k est vraie, c'est-à-dire que $c_k \le 10\,000$. On veut montrer que P_{k+1} est vraie, c'est-à-dire que $c_{k+1} \le 10\,000$.

On a, par la relation de récurrence :

$$c_{k+1} = \frac{407}{400}c_k - 225.$$

D'après l'hypothèse de récurrence $c_k \le 10\,000$, on obtient :

$$c_{k+1} \le \frac{407}{400} \times 10\,000 - 225 = 25 \times 407 - 225 = 10\,175 - 225 = 9\,950.$$

Ainsi, $c_{k+1} \le 9950 \le 10000$, donc P_{k+1} est vraie. La propriété est héréditaire.

La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier naturel n. Ainsi, pour tout entier naturel n, on a $c_n \le 10\,000$.

3. On veut en déduire que la suite (c_n) est décroissante.

Pour tout entier naturel n, on a

$$c_{n+1} - c_n = \left(\frac{407}{400}c_n - 225\right) - c_n = \left(\frac{407}{400} - 1\right)c_n - 225 = \frac{7}{400}c_n - 225.$$

D'après la question précédente, on sait que $c_n \leq 10\,000.$ Donc :

$$c_{n+1} - c_n \le \frac{7}{400} \times 10\,000 - 225 = 7 \times 25 - 225 = 175 - 225 = -50 < 0.$$

Ainsi, $c_{n+1} - c_n < 0$, donc $c_{n+1} < c_n$ pour tout entier naturel n. La suite (c_n) est donc strictement décroissante.

4. Interprétation. Le capital sur le compte reste toujours inférieur ou égal au capital initial de 10 000 € et diminue chaque année. Les intérêts à 1,75 % ne suffisent pas à compenser le retrait annuel de 225 € : à chaque fin d'année, après le retrait, le capital disponible sur le compte est plus faible que l'année précédente.

Exercice 14.

On considère la suite (u_n) définie par $u_1 = 1$ et, pour tout entier naturel $n \ge 1$, $u_{n+1} = u_n + 2n + 1$.

- 1. À l'aide de la calculatrice, déterminer les dix premiers termes de la suite (u_n) .
- **2. a.** Quelle conjecture peut-on faire sur l'expression de u_n en fonction de n?
 - **b.** Démontrer cette conjecture par récurrence.

récurrence, forme explicite

Exercice 14.

1.

n	u_n
1	1
2	4
3	9
4	16
5	25
6	36
7	49
8	64
9	81
10	100
· ·	

2.a. On peut conjecturer que, pour tout $n \ge 1$, $u_n = n^2$.

2.b. On considère la propriété P_n : $u_n = n^2$.

- **Initialisation.** Pour $n_0 = 1$, $1^2 = 1 = u_1$. Donc P_1 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 1$. On suppose que P_k est vraie, c'est-à-dire que $u_k = k^2$. On veut démontrer que P_{k+1} est alors vraie, c'est-à-dire que

$$u_{k+1} = (k+1)^2$$
.

Par hypothèse de récurrence, $u_k = k^2$.

$$u_k = k^2 \iff u_k + 2k + 1 = k^2 + 2k + 1 \iff u_{k+1} = (k+1)^2$$
.

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 1$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 1$.

Exercice 15.

- 1. Montrer que la suite (u_n) , définie pour tout entier naturel n par $u_n = -n^2 2n + 8$, est majorée par 9.
- **2.** Montrer que la suite (u_n) , définie pour tout entier naturel n non nul par $u_n = 1 \frac{1}{n}$, est bornée.
- **3.** La suite (u_n) est définie par $u_0 = 2$ et, pour tout entier naturel n, $u_{n+1} = 3u_n 5$. Montrer que la suite (u_n) est majorée par $\frac{5}{2}$.

récurrence, majorée, bornée

Exercice 15.

1. Pour tout n entier naturel, on étudie le signe de u_n – 9, soit celui de

$$-n^2-2n-1=-(n+1)^2$$
.

Donc $u_n - 9 < 0$ pour tout n entier naturel. La suite (u_n) est donc majorée par 9.

2. Pour tout entier naturel non nul, $0 < \frac{1}{n} \le 1$, donc

$$-1 \le -\frac{1}{n} < 0$$
 et $-1+1 \le 1-\frac{1}{n} < 1$.

On en déduit que la suite (u_n) est bornée.

- 3. On considère la propriété P_n : $u_n \le \frac{5}{2}$.
 - **Initialisation.** Pour $n_0 = 0$, $u_0 = 2$ et $2 \le \frac{5}{2}$, donc P_0 est vraie.
 - **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que $u_k \le \frac{5}{2}$. On veut démontrer que P_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} \le \frac{5}{2}.$$

On a, par hypothèse de récurrence, $u_k \le \frac{5}{2}$, donc

$$3u_k \le \frac{15}{2}.$$

Ainsi,

$$u_{k+1} = 3u_k - 5 \le \frac{15}{2} - 5 = \frac{5}{2}.$$

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$, c'est-à-dire que

$$u_n \leq \frac{5}{2}$$
.

On en déduit que la suite (u_n) est majorée par $\frac{5}{2}$.

Exercice 16.

On considère la suite (u_n) définie pour tout entier naturel n non nul par $u_n = \frac{1}{n(n+1)}$. On note, pour tout entier naturel n non nul :

$$S_n = u_1 + u_2 + \cdots + u_n.$$

- 1. Calculer u_1, u_2, u_3 puis S_1, S_2, S_3 . Donner les résultats sous forme de fractions irréductibles.
- **2.** Conjecturer une expression de S_n en fonction de n, puis démontrer cette conjecture par récurrence.

récurrence, forme explicite, somme

Exercice 16.

On considère la suite (u_n) définie pour tout entier naturel n non nul par

$$u_n = \frac{1}{n(n+1)}.$$

Pour tout entier naturel *n* non nul, on note

$$S_n = u_1 + u_2 + \dots + u_n.$$

1. Calculons u_1, u_2, u_3 puis S_1, S_2, S_3 .

$$u_1 = \frac{1}{1 \times 2} = \frac{1}{2}, \qquad u_2 = \frac{1}{2 \times 3} = \frac{1}{6}, \qquad u_3 = \frac{1}{3 \times 4} = \frac{1}{12}.$$

$$S_1 = u_1 = \frac{1}{2},$$

$$S_2 = u_1 + u_2 = \frac{1}{2} + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3},$$

$$S_3 = u_1 + u_2 + u_3 = S_2 + u_3 = \frac{2}{3} + \frac{1}{12} = \frac{8}{12} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4}.$$

2. À partir des valeurs trouvées :

$$S_1 = \frac{1}{2} = \frac{1}{1+1}$$
, $S_2 = \frac{2}{3} = \frac{2}{2+1}$, $S_3 = \frac{3}{4} = \frac{3}{3+1}$,

on conjecture que, pour tout entier naturel $n \ge 1$,

$$S_n = \frac{n}{n+1}.$$

On va démontrer cette conjecture par récurrence.

On considère la propriété P_n : $S_n = \frac{n}{n+1}$.

— **Initialisation.** Pour $n_0 = 1$, on a

$$S_1 = u_1 = \frac{1}{2}$$

et

$$\frac{1}{1+1}=\frac{1}{2}.$$

Donc $S_1 = \frac{1}{1+1}$ et la propriété P_1 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 1$. On suppose que la propriété P_k est vraie, c'est-à-dire que

$$S_k = \frac{k}{k+1}.$$

On veut démontrer que P_{k+1} est vraie, c'est-à-dire que

$$S_{k+1} = \frac{k+1}{k+2}.$$

Par définition,

$$S_{k+1} = S_k + u_{k+1}$$
.

D'après l'hypothèse de récurrence, on obtient

$$S_{k+1} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}.$$

On met au même dénominateur (k+1)(k+2)

$$S_{k+1} = \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)+1}{(k+1)(k+2)}.$$

Or

$$k(k+2) + 1 = k^2 + 2k + 1 = (k+1)^2$$

donc

$$S_{k+1} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2} = \frac{k+1}{(k+1)+1}.$$

Ainsi, $S_{k+1} = \frac{k+1}{k+2}$ et la propriété P_{k+1} est vraie. La propriété est donc héréditaire.

Conclusion. La propriété P_n est vraie au rang $n_0 = 1$ et elle est héréditaire. Donc P_n est vraie pour tout entier naturel $n \ge 1$. Autrement dit, pour tout entier naturel $n \ge 1$,

$$S_n = \frac{n}{n+1}.$$

Exercice 17.

On considère la suite (u_n) définie par $u_1 = \frac{1}{2}$ et, pour tout entier naturel $n \ge 1$:

$$u_{n+1} = u_n + \frac{1}{(n+1)(n+2)}.$$

- 1. Calculer u_2 , u_3 et u_4 en donnant les résultats sous forme de fraction irréductible.
- **2. a.** Quelle conjecture peut-on faire sur l'expression de u_n en fonction de n?
 - **b.** Démontrer cette conjecture par récurrence.

récurrence, forme explicite

Exercice 17.

On considère la suite (u_n) définie par $u_1 = \frac{1}{2}$ et, pour tout entier naturel $n \ge 1$,

$$u_{n+1} = u_n + \frac{1}{(n+1)(n+2)}.$$

1. Calculer u_2 , u_3 et u_4 en donnant les résultats sous forme de fractions irréductibles.

On a

$$u_2 = u_1 + \frac{1}{2 \times 3} = \frac{1}{2} + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3},$$

$$u_3 = u_2 + \frac{1}{3 \times 4} = \frac{2}{3} + \frac{1}{12} = \frac{8}{12} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4},$$

$$u_4 = u_3 + \frac{1}{4 \times 5} = \frac{3}{4} + \frac{1}{20} = \frac{15}{20} + \frac{1}{20} = \frac{16}{20} = \frac{4}{5}.$$

2. a) D'après les valeurs obtenues :

$$u_1 = \frac{1}{2} = \frac{1}{1+1}$$
, $u_2 = \frac{2}{3} = \frac{2}{2+1}$, $u_3 = \frac{3}{4} = \frac{3}{3+1}$, $u_4 = \frac{4}{5} = \frac{4}{4+1}$,

on peut conjecturer que, pour tout entier naturel $n \ge 1$, $u_n = \frac{n}{n+1}$.

b) On va démontrer cette conjecture par récurrence.

On considère la propriété P_n : $u_n = \frac{n}{n+1}$.

— **Initialisation.** Pour
$$n_0 = 1$$
, on a $u_1 = \frac{1}{2}$ et $\frac{1}{1+1} = \frac{1}{2}$. Ainsi, $u_1 = \frac{1}{1+1}$, donc P_1 est vraie.

— **Hérédité.** On considère un entier quelconque
$$k \ge 1$$
. On suppose que la propriété P_k est vraie, c'est-à-dire que

$$u_k = \frac{k}{k+1}.$$

On veut montrer que P_{k+1} est vraie, c'est-à-dire que

$$u_{k+1} = \frac{k+1}{k+2}.$$

Par définition de la suite,

$$u_{k+1} = u_k + \frac{1}{(k+1)(k+2)}.$$

En utilisant l'hypothèse de récurrence,

$$u_{k+1} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} = \frac{k(k+2)+1}{(k+1)(k+2)}.$$

Or

$$k(k+2) + 1 = k^2 + 2k + 1 = (k+1)^2$$
,

ďoù

$$u_{k+1} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2} = \frac{k+1}{(k+1)+1}.$$

Ainsi, P_{k+1} est vraie. La propriété est héréditaire.

Conclusion. La propriété P_n est vraie au rang $n_0 = 1$ et elle est héréditaire. Donc P_n est vraie pour tout entier naturel $n \ge 1$. Autrement dit,

$$u_n = \frac{n}{n+1}$$
 pour tout entier naturel $n \ge 1$.

Exercice 18.

On considère la propriété P_n suivante, où n est un entier supérieur ou égal à 2 :

 P_n : le nombre de cordes reliant n points distincts d'un cercle est égal à $\frac{n(n-1)}{2}$.

- 1. Écrire la propriété P_2 . Est-elle vraie?
- **2.** Soit k un entier naturel supérieur ou égal à 2. Écrire les propriétés P_k et P_{k+1} .
- **3.** Utiliser les questions précédentes pour démontrer que la propriété P_n est vraie pour tout entier naturel $n \ge 2$.

Exercice 18.

On considère la propriété P_n suivante, où n est un entier supérieur ou égal à 2 :

 P_n : « le nombre de cordes reliant n points distincts d'un cercle est égal à $\frac{n(n-1)}{2}$ ».

1. La propriété P2 s'écrit : « le nombre de cordes reliant 2 points distincts d'un cercle est égal à

$$\frac{2(2-1)}{2}.$$

>>

Or

$$\frac{2(2-1)}{2} = \frac{2}{2} = 1.$$

Il n'existe qu'une seule corde reliant deux points distincts d'un cercle. Donc la propriété P_2 est vraie.

2.

 P_k : « le nombre de cordes reliant k points distincts d'un cercle est égal à $\frac{k(k-1)}{2}$ ».

 P_{k+1} : « le nombre de cordes reliant k+1 points distincts d'un cercle est égal à $\frac{(k+1)k}{2}$ ».

3. On va raisonner par récurrence sur n.

- **Initialisation.** D'après la question 1, la propriété P_2 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 2$. On suppose que P_k est vraie (hypothèse de récurrence), c'est-à-dire que le nombre de cordes reliant k points distincts d'un cercle est égal à

$$\frac{k(k-1)}{2}$$
.

On ajoute un nouveau point sur le cercle. Ce point peut être relié à chacun des k points déjà présents, ce qui donne k cordes supplémentaires.

Le nombre de cordes reliant k+1 points distincts d'un cercle est donc :

$$\frac{k(k-1)}{2} + k = \frac{k(k-1) + 2k}{2} = \frac{k[(k-1) + 2]}{2} = \frac{k(k+1)}{2} = \frac{(k+1)k}{2}.$$

C'est exactement l'égalité annoncée dans P_{k+1} . Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 2$ et elle est héréditaire. Donc P_n est vraie pour tout entier naturel $n \ge 2$.

Exercice 19.

- **1.** Soit (u_n) la suite définie pour tout entier naturel n par $u_n = 2^n n + 5$.
 - **a.** Quel est le sens de variation des suites (v_n) et (w_n) , définies pour tout entier naturel n par $v_n = 2^n$ et par $w_n = -n + 5$?
 - **b.** Peut-on en déduire le sens de variation de la suite (u_n) ?
 - **c.** Étudier le sens de variation de la suite (u_n) .
- **2.** Étudier le sens de variation de la suite (t_n) , définie pour tout entier naturel n par

$$t_n = \left(\frac{1}{2}\right)^n - 5n + 2.$$

EXERCICES

Exercice 19.

1.a. La suite (v_n) est géométrique de premier terme $v_0 = 1$ et de raison q = 2. Or $v_0 > 0$ et q > 1. La suite (v_n) est donc croissante.

La suite (w_n) est arithmétique de premier terme $w_0 = 5$ et de raison r = -1. Or r < 0, donc la suite (w_n) est décroissante.

1.b. On remarque que, pour tout entier naturel n,

$$u_n = v_n + w_n$$
.

Les suites (v_n) et (w_n) n'ont pas le même sens de variation, on ne peut donc pas déduire le sens de variation de la suite (u_n) .

1.c. Pour tout entier naturel n,

$$u_{n+1} - u_n = 2^{n+1} - (n+1) + 5 - (2^n - n + 5)$$
$$= 2^{n+1} - n - 1 + 5 - 2^n + n - 5$$
$$= 2 \times 2^n - 2^n - 1 = 2^n - 1.$$

Or $2^n - 1 \ge 0$ pour tout entier naturel n, donc $u_{n+1} - u_n \ge 0$. La suite (u_n) est donc croissante.

2. Soient (l_n) et (m_n) les suites définies pour tout entier naturel n par

$$l_n = 0.5^n$$
 et $m_n = -5n + 2$.

La suite (l_n) est géométrique de premier terme $l_0 = 1$ et de raison q = 0,5. Or $l_0 > 0$ et 0 < q < 1. La suite (l_n) est donc décroissante.

La suite (m_n) est arithmétique de premier terme $m_0 = 2$ et de raison r = -5. Or r < 0, donc la suite (m_n) est décroissante.

On remarque que, pour tout entier naturel n,

$$t_n = l_n + m_n$$
.

Les suites (l_n) et (m_n) étant toutes les deux décroissantes, la suite (t_n) est donc décroissante.

Exercice 20.

On considère la suite (u_n) de premier terme $u_0 = 1$ et telle que $u_{n+1} = 5u_n + 8$ pour tout entier naturel n. Les questions 1 et 2 sont indépendantes et proposent deux méthodes différentes pour déterminer une formule explicite pour la suite (u_n) .

- 1. Montrer par récurrence que $u_n = 3 \times 5^n 2$ pour tout entier naturel n.
- **2.** On considère la suite (v_n) définie par $v_n = u_n + 2$ pour tout entier naturel n.
 - **a.** Démontrer que la suite (v_n) est géométrique de raison 5.
 - **b.** En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n, pour tout $n \in \mathbb{N}$.

récurrence, forme explicite, géométrique, arithmético-géométrique

Exercice 20.

- **1.** On considère la propriété P_n : $u_n = 3 \times 5^n 2$.
 - **Initialisation.** Pour $n_0 = 0$,

$$3 \times 5^0 - 2 = 1$$
 et $u_0 = 1$.

Donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que

$$u_k = 3 \times 5^k - 2.$$

On veut démontrer que P_{k+1} est vraie.

$$u_{k+1} = 5u_k + 8 = 5 \times (3 \times 5^k - 2) + 8 = 3 \times 5^{k+1} - 10 + 8 = 3 \times 5^{k+1} - 2.$$

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$.

2.a. Pour tout entier naturel *n*,

$$v_{n+1} = u_{n+1} + 2 = 5u_n + 10 = 5(u_n + 2) = 5v_n$$
.

Donc (v_n) est une suite géométrique de premier terme

$$v_0 = u_0 + 2 = 3$$

et de raison 5.

2.b. Pour tout entier naturel *n*,

$$v_n = 3 \times 5^n$$
.

Comme $u_n = v_n - 2$, on obtient :

$$u_n = 3 \times 5^n - 2$$
.

Exercice 21.

Soit (u_n) la suite définie par

$$\begin{cases} u_0 = 1, \\ u_{n+1} = \frac{u_n}{1 + u_n} & \text{pour tout entier naturel } n. \end{cases}$$

- 1. a. Montrer que tous les termes de cette suite sont strictement positifs.
 - **b.** Étudier le sens de variation de la suite (u_n) .
- **2. a.** Montrer que la suite (v_n) , définie pour tout entier naturel n par $v_n = \frac{1}{u_n}$, est une suite arithmétique.
 - **b.** En déduire l'expression de v_n puis de u_n en fonction de n.
 - **c.** Refaire la démonstration de la monotonie de la suite (u_n) à l'aide de la formule explicite que l'on vient de trouver.

récurrence, variation, arithmétique, forme explicite

Exercice 21.

1.a. On considère la propriété P_n : $u_n > 0$.

— **Initialisation.** Pour $n_0 = 0$,

$$u_0 = 1$$
 et $1 > 0$.

Donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire que $u_k > 0$. On veut démontrer que P_{k+1} est vraie.

On a
$$u_k > 0$$
 et $1 + u_k > 1 > 0$, donc $\frac{u_k}{1 + u_k} > 0$. Ainsi, $u_{k+1} > 0$.

Donc P_{k+1} est vraie. La propriété est héréditaire.

- **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P_n est vraie pour tout entier $n \ge 0$.
- **1.b.** Pour tout entier naturel *n*,

$$u_{n+1} - u_n = \frac{u_n}{1 + u_n} - u_n = \frac{u_n - u_n(1 + u_n)}{1 + u_n} = \frac{-u_n^2}{1 + u_n}.$$

Or, pour tout entier naturel n, $u_n > 0$, donc

$$-u_n^2 < 0$$
 et $1 + u_n > 0$.

Ainsi, $\frac{-u_n^2}{1+u_n}$ < 0, donc $u_{n+1}-u_n$ < 0. La suite (u_n) est donc décroissante.

2.a. Pour tout entier naturel *n*,

$$v_{n+1} - v_n = \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{1}{\frac{u_n}{1+u_n}} - \frac{1}{u_n} = \frac{1+u_n}{u_n} - \frac{1}{u_n} = 1.$$

La suite (v_n) est arithmétique de raison r = 1. Le premier terme est

$$v_0 = \frac{1}{u_0} = 1.$$

- **2.b.** Pour tout entier naturel n, $v_n = 1 + n$. Donc $u_n = \frac{1}{v_n} = \frac{1}{1+n}$.
- **2.c.** Pour tout entier naturel *n*,

$$u_{n+1} - u_n = \frac{1}{n+2} - \frac{1}{n+1} = \frac{n+1-(n+2)}{(n+1)(n+2)} = \frac{-1}{(n+1)(n+2)}.$$

Or, pour tout entier naturel n,

$$-1 < 0$$
 et $(n+1)(n+2) > 0$,

donc $u_{n+1} - u_n < 0$. La suite (u_n) est donc décroissante.

Exercice 22.

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 8, \\ u_{n+1} = \frac{2}{5}u_n + 3 & \text{pour tout entier naturel } n. \end{cases}$$

- **1. a.** Calculer u_1 , u_2 et u_3 .
 - **b.** Conjecturer le sens de variation de la suite (u_n) .
- **2.** Montrer que, pour tout $n \in \mathbb{N}$, $u_n \ge u_{n+1} \ge 5$. La conjecture est-elle vérifiée?
- **3.** Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 5$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{5}$.
 - **b.** En déduire une expression de v_n en fonction de n.
- **4.** Déterminer une expression de u_n en fonction de n.
- **5.** Calculer u_{100} .

récurrence, minorée, forme explicite, géométrique, arithmético-géométrique

Exercice 22.

1.a.
$$u_1 = \frac{2}{5} \times 8 + 3 = 6.2;$$

$$u_2 = \frac{2}{5} \times 6,2 + 3 = 5,48;$$
 $u_3 = \frac{2}{5} \times 5,48 + 3 = 5,192.$

- **1.b.** On conjecture que la suite (u_n) est décroissante.
- **2.** On considère la propriété P_n : $5 \le u_{n+1} \le u_n$.

— **Initialisation.** Pour $n_0 = 0$, $u_0 = 8$, $u_1 = 6.2$ et

$$5 \le 6, 2 \le 8$$
.

Donc P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire :

$$5 \le u_{k+1} \le u_k.$$

On veut démontrer que P_{k+1} est vraie, c'est-à-dire :

$$5 \le u_{k+2} \le u_{k+1}$$
.

On a, par hypothèse de récurrence, $5 \le u_{k+1} \le u_k$.

$$5 \le u_{k+1} \le u_k \iff \frac{2}{5} \times 5 \le \frac{2}{5} u_{k+1} \le \frac{2}{5} u_k$$
$$\iff \frac{2}{5} \times 5 + 3 \le \frac{2}{5} u_{k+1} + 3 \le \frac{2}{5} u_k + 3$$
$$\iff 5 \le u_{k+2} \le u_{k+1}.$$

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$.

Pour tout entier naturel n, on a $5 \le u_{n+1} \le u_n$. La suite (u_n) est donc décroissante et minorée par 5.

3.a. Pour tout entier naturel n,

$$v_{n+1} = u_{n+1} - 5 = \frac{2}{5}u_n + 3 - 5 = \frac{2}{5}u_n - 2 = \frac{2}{5}(u_n - 5) = \frac{2}{5}v_n.$$

La suite (v_n) est géométrique de raison $q = \frac{2}{5}$ et de premier terme $v_0 = u_0 - 5 = 3$.

3.b. Pour tout *n*,

$$v_n = 3\left(\frac{2}{5}\right)^n$$
.

4. On a $v_n = u_n - 5 \iff u_n = v_n + 5$. D'où

$$u_n = 3\left(\frac{2}{5}\right)^n + 5.$$

5.

$$u_{100} = 3\left(\frac{2}{5}\right)^{100} + 5 \approx 5,$$

 $car\left(\frac{2}{5}\right)^{100}$ est très proche de 0.

Exercice 23.

On considère la suite (u_n) définie par $u_0 = \frac{1}{4}$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n + 2}{u_n + 2}.$$

- **1.** Déterminer la fonction f définie sur $[0; +\infty[$ telle que $u_{n+1} = f(u_n)$.
- **2.** Démontrer que la fonction f est croissante sur $[0; +\infty[$.
- **3.** Dans un repère, représenter la fonction f et la droite d'équation y = x. On prendra 2 cm pour unité sur chaque axe.

En utilisant le graphique :

- **a.** placer les termes u_0 , u_1 et u_2 sur l'axe des abscisses;
- **b.** conjecturer le sens de variation de la suite (u_n) ;
- **c.** conjecturer un majorant de la suite (u_n) .
- **4. a.** Démontrer que, pour tout entier naturel $n: 0 \le u_n \le u_{n+1} \le 2$.
 - **b.** Les conjectures précédentes sont-elles vérifiées?

récurrence, représentation, croissant, bornée

Exercice 23.

1. Soit $f: x \mapsto \frac{3x+2}{x+2}$ définie sur $[0; +\infty[$. On a $u_{n+1} = f(u_n)$.

2.

$$f'(x) = \frac{3(x+2) - (3x+2)}{(x+2)^2} = \frac{4}{(x+2)^2}.$$

Pour tout réel positif x, $f'(x) \ge 0$. La fonction f est donc croissante sur $[0; +\infty[$.

- **3.a.** (figure)
- **3.b.** On conjecture que la suite (u_n) est croissante.
- **3.c.** On conjecture que la suite (u_n) est majorée par 2.
- **4.a.** On considère la propriété P_n : $0 \le u_n \le u_{n+1} \le 2$.
 - **Initialisation.** Pour $n_0 = 0$,

$$u_0 = \frac{1}{4}$$
, $u_1 = \frac{3 \times \frac{1}{4} + 2}{\frac{1}{4} + 2} = \frac{11}{9}$.

On a

$$0 \le \frac{1}{4} \le \frac{11}{9} \le 2.$$

Donc P_0 est vraie.

— **Hérédité.** On considère un entier $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire :

$$0 \le u_k \le u_{k+1} \le 2$$
.

On veut montrer que P_{k+1} est vraie, c'est-à-dire

$$0 \le u_{k+1} \le u_{k+2} \le 2$$
.

La fonction f étant strictement croissante sur $[0; +\infty[$,

$$0 \le u_k \le u_{k+1} \le 2 \iff f(0) \le f(u_k) \le f(u_{k+1}) \le f(2)$$
.

Or

$$f(0) = 1$$
, $f(2) = 2$.

Donc

$$1 \le f(u_k) \le f(u_{k+1}) \le 2.$$

Or $u_{k+1} = f(u_k)$ et $u_{k+2} = f(u_{k+1})$, d'où

$$0 \le u_{k+1} \le u_{k+2} \le 2$$
.

Donc P_{k+1} est vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et héréditaire. Donc P_n est vraie pour tout entier $n \ge 0$.

$$0 \le u_n \le u_{n+1} \le 2$$
.

La suite (u_n) est donc croissante et majorée par 2.

Exercice 24.

On considère la suite numérique (u_n) définie pour tout entier naturel n par

$$\begin{cases} u_0 = 2, \\ u_{n+1} = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2}. \end{cases}$$

On considère également la suite numérique (v_n) , définie pour tout entier naturel n par $v_n = u_n - 3$.

- 1. Montrer que, pour tout entier naturel $n: v_{n+1} = -\frac{1}{2}v_n^2$.
- **2.** Démontrer par récurrence que, pour tout entier naturel $n, -1 \le v_n \le 0$.
- **3. a.** Démontrer que, pour tout entier naturel $n: v_{n+1} v_n = -v_n \left(\frac{1}{2}v_n + 1\right)$.
 - **b.** En déduire le sens de variation de la suite (v_n) puis de celui de la suite (u_n) .

récurrence, bornée, variation

Exercice 24.

1. Pour tout entier naturel *n*,

$$-\frac{1}{2}v_n^2 = -\frac{1}{2}(u_n - 3)^2 = -\frac{1}{2}(u_n^2 - 6u_n + 9) = -\frac{1}{2}u_n^2 + 3u_n - \frac{9}{2} = v_{n+1}.$$

- **2.** On considère la propriété P_n : $-1 \le v_n \le 0$.
 - **Initialisation.** Pour $n_0 = 0$,

$$v_0 = -1$$
.

Donc P_0 est vraie.

— **Hérédité.** On considère un entier $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire :

$$-1 \le v_k \le 0$$
.

On veut démontrer que P_{k+1} est vraie.

On a

$$-1 \le v_k \le 0 \implies (-1)^2 \ge v_k^2 \ge 0,$$

car la fonction carré est décroissante sur $]-\infty,0]$.

Ainsi,

$$0 \le v_k^2 \le 1.$$

Donc

$$0 \times \left(-\frac{1}{2}\right) \ge \nu_k^2 \times \left(-\frac{1}{2}\right) \ge 1 \times \left(-\frac{1}{2}\right),$$

soit

$$-\frac{1}{2} \le -\frac{1}{2} v_k^2 \le 0.$$

Or

$$v_{k+1} = -\frac{1}{2}v_k^2.$$

Donc

$$-1 \le v_{k+1} \le 0$$
.

 P_{k+1} est donc vraie. La propriété est héréditaire.

— **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$.

3.a.

$$v_{n+1} - v_n = -\frac{1}{2}v_n^2 - v_n = -v_n\left(\frac{1}{2}v_n + 1\right).$$

3.b. D'après la question 2., pour tout entier naturel *n*,

$$-1 \le v_n \le 0$$
.

Ainsi.

$$0 \le -v_n \le 1, \qquad 1 \le \frac{1}{2}v_n + 1 \le 1.$$

Donc

$$v_{n+1} - v_n \ge 0$$
.

La suite (v_n) est donc croissante.

Exercice 25.

En 2020, une ville compte 5000 habitants. Les études démographiques sur les dernières années ont montré que, chaque année :

- 20 % des habitants de la ville meurent ou quittent la ville;
- 1200 personnes naissent ou emménagent dans la ville.

On note u_n le nombre d'habitants (exprimé en milliers) l'année 2020 + n.

- **1.** Expliquer pourquoi $u_0 = 5$.
- **2.** Montrer, en justifiant, que pour tout entier naturel n, $u_{n+1} = 0.8 u_n + 1.2$.
- **3.** En utilisant la calculatrice, conjecturer le sens de variation de la suite (u_n) et démontrer la conjecture par récurrence.
- **4. a.** Démontrer par récurrence que, pour tout entier naturel n, $u_n \le 6$.
 - **b.** Interpréter le résultat dans le contexte de l'exercice.

r'ecurrence, major'ee, arithm'etico-g'eom'etrique

Exercice 25.

On note u_n le nombre d'habitants (exprimé en milliers) l'année 2020 + n.

- 1. En 2020, la ville compte 5000 habitants, soit 5 milliers d'habitants. Donc $u_0 = 5$.
- **2.** Chaque année, 20% des habitants partent ou décèdent, donc il reste 80% de la population, soit un facteur 0.8. De plus, 1200 personnes arrivent, soit 1.2 milliers.

Ainsi, pour tout entier naturel n,

$$u_{n+1} = 0.8 u_n + 1.2.$$

3. À l'aide de la calculatrice, on obtient par exemple :

$$u_0 = 5$$
, $u_1 = 5.2$, $u_2 \approx 5.36$, $u_3 \approx 5.488$,...

On conjecture que la suite (u_n) est croissante et qu'elle semble se rapprocher de la valeur 6.

On va maintenant démontrer cette conjecture par récurrence.

On considère la propriété

$$P_n: 5 \le u_n \le u_{n+1} \le 6.$$

— **Initialisation.** Pour $n_0 = 0$, on a

$$u_0 = 5$$
, $u_1 = 0.8 \times 5 + 1.2 = 5.2$.

Donc

$$5 \le u_0 \le u_1 \le 6$$
.

La propriété P_0 est vraie.

— **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire

$$5 \le u_k \le u_{k+1} \le 6$$
.

On veut démontrer que P_{k+1} est vraie, soit

$$5 \le u_{k+1} \le u_{k+2} \le 6$$
.

D'une part, on a

$$u_{k+1} = 0.8 u_k + 1.2.$$

Comme $u_k \ge 5$, on obtient

$$u_{k+1} = 0.8u_k + 1.2 \ge 0.8 \times 5 + 1.2 = 5.2 \ge 5.$$

D'autre part,

$$u_{k+2} = 0.8 u_{k+1} + 1.2.$$

Comme $u_{k+1} \le 6$ (hypothèse de récurrence), on a

$$u_{k+2} = 0.8u_{k+1} + 1.2 \le 0.8 \times 6 + 1.2 = 6.$$

Enfin,

$$u_{k+2} - u_{k+1} = 0.8u_{k+1} + 1.2 - u_{k+1} = 1.2 - 0.2u_{k+1}$$
.

Or, d'après l'hypothèse de récurrence, $u_{k+1} \le 6$, donc

$$1,2-0,2u_{k+1} \ge 1,2-0,2 \times 6 = 0.$$

Ainsi, $u_{k+2} - u_{k+1} \ge 0$, donc $u_{k+1} \le u_{k+2}$.

On a donc montré:

$$5 \le u_{k+1} \le u_{k+2} \le 6$$
,

c'est-à-dire que P_{k+1} est vraie. La propriété est héréditaire.

Conclusion pour la question 3. La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire. Donc, pour tout entier naturel n,

$$5 \le u_n \le u_{n+1} \le 6$$
.

La suite (u_n) est donc croissante et majorée par 6.

4.a. D'après la question 3, on a, pour tout entier naturel n,

$$u_n \leq 6$$
.

On a donc bien démontré « par récurrence » que, pour tout entier naturel $n, u_n \le 6$.

4.b. Dans le contexte de l'exercice, cela signifie que la population de la ville augmente chaque année, mais qu'elle ne dépassera jamais 6000 habitants et se stabilise autour de cette valeur.

Exercice 26.

On considère la fonction f définie sur \mathbb{R} par : $f(x) = x^3 + x - 3$.

- **1.** Soit la suite (u_n) définie sur \mathbb{N} par $u_n = f(n)$.
 - **a.** À l'aide du tableur de la calculatrice, calculer les dix premiers termes de la suite (u_n) .
 - **b.** La suite (u_n) semble-t-elle strictement croissante? strictement décroissante? Justifier la conjecture
 - **c.** La suite (u_n) semble-t-elle minorée? majorée? Si oui, donner un minorant (respectivement un majorant) le plus grand (respectivement le plus petit) possible. Justifier ensuite cette conjecture.

2. Soit la suite (v_n) définie sur \mathbb{N} par :

$$v_0 = 1$$
 et $v_{n+1} = f(v_n)$.

- **a.** À l'aide du tableur de la calculatrice, calculer les quatre premiers termes de la suite (v_n) .
- **b.** Établir les mêmes types de conjectures qu'à la question 1.
- **c.** Démontrer que, pour tout entier naturel $n, v_n \le 1$.
- **d.** Étudier la monotonie de la suite (v_n) .

récurrence, majorée, variation

Exercice 26.

1.a.

1.b. On conjecture que la suite (u_n) est croissante, car sur les premiers termes de la suite, on constate que $u_n \le u_{n+1}$.

On considère la propriété P_n : $u_n \le u_{n+1}$.

- **Initialisation.** Pour $n_0 = 0$, $u_0 = -3$, $u_1 = -1$ et $-3 \le -1$. Donc P_0 est vraie.
- **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire $u_k \le u_{k+1}$. On veut montrer que P_{k+1} est vraie, c'est-à-dire $u_{k+1} \le u_{k+2}$.

On a, par hypothèse de récurrence, $u_k \le u_{k+1}$.

Comme $u_{n+1} = f(u_n)$ et que la fonction f est strictement croissante sur \mathbb{R} , on obtient :

$$u_k \le u_{k+1} \iff f(u_k) \le f(u_{k+1}).$$

En effet, pour tout réel x, on a : $f'(x) = 3x^2 + 1 > 0$.

Donc $u_{k+1} \le u_{k+2}$.

Ainsi, P_{k+1} est vraie. La propriété est héréditaire.

- **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$. La suite (u_n) est donc croissante.
- **1.c.** La suite (u_n) est croissante, donc minorée par son premier terme $u_0 = -3$. En revanche, elle ne semble pas majorée. En effet, quel que soit le réel A, il semble qu'il existe un entier naturel N tel que, pour tout n > N, $u_n ∈ A$; +∞[.

2.a.

$$v_0 = 1;$$
 $v_1 = v_0^3 + v_0 - 3 = 1^3 + 1 - 3 = -1;$ $v_2 = v_1^3 + v_1 - 3 = (-1)^3 - 1 - 3 = -5;$ $v_3 = -133.$

- **2.b.** On conjecture que la suite (v_n) est décroissante. La suite (v_n) semble décroissante, donc majorée par son premier terme $v_0 = 1$. En revanche, elle ne semble pas minorée. En effet, quel que soit le réel A, il semble qu'il existe un entier naturel N tel que, pour tout n > N, $v_n \in]-\infty$; A[.
- **2.c.** On considère la propriété P_n : $v_n \le 1$ pour tout entier naturel n.
 - **Initialisation.** Pour $n_0 = 0$, $v_0 = 1$ et $1 \le 1$. Donc P_0 est vraie.
 - **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire $v_k \le 1$.

On veut montrer que P_{k+1} est vraie, c'est-à-dire $v_{k+1} \le 1$.

On sait que la fonction f est strictement croissante sur \mathbb{R} . Ainsi, $v_k \le 1 \iff f(v_k) \le f(1)$,

Or
$$f(1) = 1^3 + 1 - 3 = -1$$
.

Donc $f(v_k) \leq -1$.

et $v_{k+1} \le -1 \le 1$.

Ainsi, P_{k+1} est vraie. La propriété est héréditaire.

- **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$.
- **2.d.** Pour tout entier naturel n, $v_{n+1} v_n = v_n^3 + v_n 3 v_n = v_n^3 3$.

D'après la question précédente, pour tout entier naturel $n, v_n \le 1 \implies v_n^3 \le 1^3$.

Ainsi, $v_n^3 - 3 \le 1 - 3 = -2 < 0$.

Donc, pour tout entier naturel n, $v_{n+1} - v_n \le 0$.

La suite (v_n) est donc décroissante.

Exercice 27.

On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n:

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1.$$

- 1. a. Déterminer u_1 , u_2 , u_3 et u_4 . On pourra en donner des valeurs approchées au centième près.
 - **b.** Formuler une conjecture sur le sens de variation de la suite (u_n) .
- **2. a.** Démontrer par récurrence que, pour tout entier naturel n, $u_n \le n + 3$.
 - **b.** Sans utiliser de raisonnement par récurrence, démontrer que, pour tout entier naturel n:

$$u_{n+1} - u_n = \frac{1}{3}(n+3-u_n).$$

En déduire une validation de la conjecture.

- **3.** On désigne par (v_n) la suite définie pour tout entier naturel n par $v_n = u_n n$.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - **b.** En déduire une expression de v_n en fonction de n, puis montrer que, pour tout entier naturel n, on a :

$$u_n = 2\left(\frac{2}{3}\right)^n + n.$$

c. Refaire une démonstration de la croissance de la suite (u_n) à partir de la formule explicite que l'on vient d'obtenir.

récurrence, forme explicite, géométrique

Exercice 27.

1.a.

$$u_1 = \frac{2}{3} \times u_0 + \frac{1}{3} \times 0 + 1 = \frac{7}{3} \approx 2,33;$$
 $u_2 = \frac{26}{9} \approx 2,89;$ $u_3 = \frac{97}{27} \approx 3,59;$ $u_4 = \frac{356}{81} \approx 4,40.$

- **1.b.** On conjecture que la suite (u_n) est croissante.
- **2.a.** On considère la propriété P_n : $u_n \le n + 3$.
 - **Initialisation.** Pour $n_0 = 0$, $u_0 = 2$, et 0 + 3 = 3 et $2 \le 3$. Donc P_0 est vraie.
 - **Hérédité.** On considère un entier quelconque $k \ge 0$. On suppose que P_k est vraie, c'est-à-dire : $u_k \le k+3$.

On veut montrer que P_{k+1} est vraie, c'est-à-dire : $u_{k+1} \le k+4$.

On a: $u_{k+1} = \frac{2}{3}u_k + \frac{1}{3}k + 1$.

D'après l'hypothèse de récurrence $u_k \le k + 3$,

$$\frac{2}{3}u_k \le \frac{2}{3}(k+3).$$

Ainsi:

$$u_{k+1} = \frac{2}{3}u_k + \frac{1}{3}k + 1 \le \frac{2}{3}(k+3) + \frac{1}{3}k + 1$$
$$= \left(\frac{2}{3}k + 2\right) + \frac{1}{3}k + 1 = k + 3 \le k + 4.$$

Donc $u_{k+1} \le k+4$, donc P_{k+1} est vraie. La propriété est héréditaire.

- **Conclusion.** La propriété P_n est vraie au rang $n_0 = 0$ et elle est héréditaire; donc P_n est vraie pour tout entier $n \ge 0$.
- **2.b.** Pour tout entier naturel n, $u_{n+1} u_n = \frac{2}{3}u_n + \frac{1}{3}n + 1 u_n = -\frac{1}{3}u_n + \frac{1}{3}n + 1 = \frac{1}{3}(n+3-u_n)$. D'après la question précédente, $u_n \le n+3$, donc $n+3-u_n \ge 0 \implies u_{n+1}-u_n \ge 0$. La suite (u_n) est donc croissante.
- **3.a.** Pour tout entier naturel n, $v_{n+1} = u_{n+1} (n+1) = \frac{2}{3}u_n + \frac{1}{3}n + 1 n 1 = \frac{2}{3}(u_n n) = \frac{2}{3}v_n$. La suite (v_n) est géométrique de raison $q = \frac{2}{3}$. Le premier terme est : $v_0 = u_0 0 = 2$.
- **3.b.** Pour tout entier naturel n, $v_n = 2\left(\frac{2}{3}\right)^n$.

Or $v_n = u_n - n \iff u_n = v_n + n$.

Donc, pour tout entier naturel n, $u_n = 2\left(\frac{2}{3}\right)^n + n$.

3.c. Pour tout entier naturel n,

$$u_{n+1} - u_n = 2\left(\frac{2}{3}\right)^{n+1} + (n+1) - \left(2\left(\frac{2}{3}\right)^n + n\right)$$

$$= 2\left(\frac{2}{3}\right)^{n} \left(\frac{2}{3} - 1\right) + 1 = -2\left(\frac{2}{3}\right)^{n} \left(\frac{1}{3}\right) + 1 = -\left(\frac{2}{3}\right)^{n+1} + 1.$$

Or $0 < \left(\frac{2}{3}\right)^{n+1} \le 1$, donc $-\left(\frac{2}{3}\right)^{n+1} + 1 \ge 0$.

Ainsi, pour tout n,

$$u_{n+1} - u_n \ge 0$$
.

La suite (u_n) est donc croissante.

Exercice 28.

Soit (u_n) la suite définie par $u_0 = 6$ et, pour tout entier naturel n,

$$u_{n+1} = 2u_n - 5$$
.

Montrer par récurrence que, pour tout entier naturel *n*,

$$u_n = 2^n + 5$$
.

récurrence, forme explicite

Exercice 28.

Initialisation: $2^0 + 5 = 1 + 5 = 6 = u_0$.

Hérédité : soit un entier naturel n tel que $u_n = 2^n + 5$.

$$u_{n+1} = 2u_n - 5 = 2(2^n + 5) - 5 = 2^{n+1} + 5$$
.

Conclusion : pour tout entier naturel n, $u_n = 2^n + 5$.

Exercice 29.

Soit (v_n) la suite définie par $v_1 = -1$ et, pour tout entier naturel non nul n:

$$v_{n+1} = -3v_n + 8$$
.

Montrer que, pour tout entier naturel non nul n, $v_n = (-3)^n + 2$.

récurrence, forme explicite

Exercice 29.

Initialisation : $(-3)^1 + 2 = -3 + 2 = -1 = v_1$.

Hérédité : soit un entier naturel n tel que $v_n = (-3)^n + 2$.

$$v_{n+1} = -3v_n + 8 = -3((-3)^n + 2) + 8 = (-3)^{n+1} + 2.$$

Conclusion : pour tout entier naturel non nul n, $v_n = (-3)^n + 2$.

Exercice 30.

Soit (t_n) la suite définie par $t_1 = 11$ et, pour tout entier naturel non nul n,

$$t_{n+1} = 4t_n + 3$$
.

Montrer que, pour tout entier naturel non nul n,

$$t_n = 3 \times 4^n - 1.$$

récurrence, forme explicite

Exercice 30.

Initialisation : $3 \times 4^1 - 1 = 12 - 1 = 11 = t_1$.

Hérédité : soit un entier naturel n tel que $t_n = 3 \times 4^n - 1$.

$$t_{n+1} = 4t_n + 3 = 4(3 \times 4^n - 1) + 3 = 3 \times 4^{n+1} - 1.$$

Conclusion : pour tout entier naturel non nul n, $t_n = 3 \times 4^n - 1$.

Exercice 31.

Soit (v_n) la suite définie par $v_1 = 2$ et, pour tout entier naturel non nul n:

$$v_{n+1} = \frac{3}{5}v_n + 2.$$

Montrer par récurrence que, pour tout entier naturel non nul n, $v_n \le 5$.

récurrence, majorée

Exercice 31.

Initialisation : $v_1 = 2 \le 5$.

Hérédité : soit un entier naturel n tel que $v_n \le 5$.

$$v_{n+1} = \frac{3}{5}v_n + 2 \le \frac{3}{5} \times 5 + 2 = 5.$$

Conclusion : pour tout entier naturel non nul n, $v_n \le 5$.

Exercice 32.

Soit (w_n) la suite définie par $w_0 = 0$ et, pour tout entier naturel n,

$$w_{n+1} = 3w_n - 2n + 3.$$

Démontrer que, pour tout entier naturel n, $w_n \ge n$.

récurrence

Exercice 32.

Initialisation : $w_0 = 0 \ge 0$.

Hérédité : soit un entier naturel n tel que $w_n \ge n$.

$$w_{n+1} = 3w_n - 2n + 3 \ge 3n - 2n + 1 = n + 1.$$

Conclusion : pour tout entier naturel n, $w_n \ge n$.

Exercice 33.

Soit (u_n) la suite définie pour tout entier naturel n par

$$u_0 = 8$$
 et $u_{n+1} = \frac{1}{4}u_n + 3$.

- **1.** Calculer u_1 .
- **2.** Montrer par récurrence que, pour tout entier naturel n,

$$u_{n+1} \leq u_n$$
.

3. En déduire le sens de variation de (u_n) .

récurrence, décroissante

Exercice 33.

- 1. $u_1 = 5$.
- **2. Initialisation :** $5 \le 8$ donc $u_1 \le u_0$.

Hérédité : soit un entier naturel n tel que $u_{n+1} \le u_n$.

$$u_{n+2} = \frac{1}{4}u_{n+1} + 3 \le \frac{1}{4}u_n + 3.$$

Donc $u_{n+2} \le u_{n+1}$.

Conclusion : pour tout entier naturel n, $u_{n+1} \le u_n$.

3. La suite (u_n) est décroissante.

Exercice 34.

Soit (v_n) la suite définie pour tout entier naturel n par

$$v_0 = 3$$
 et $v_{n+1} = \frac{1}{3}v_n + 4$.

- **1.** Calculer v_1 .
- **2.** Montrer par récurrence que, pour tout entier naturel n,

$$v_{n+1} \ge v_n$$
.

3. En déduire le sens de variation de (v_n) .

récurrence, croissante

Exercice 34.

- 1. $v_1 = 5$.
- **2. Initialisation :** $5 \ge 3$ donc $v_1 \ge v_0$.

Hérédité : soit un entier naturel n tel que $v_{n+1} \ge v_n$.

$$v_{n+2} = \frac{1}{3}v_{n+1} + 4 \ge \frac{1}{3}v_n + 4.$$

Donc $v_{n+2} \ge v_{n+1}$.

Conclusion : pour tout entier naturel n, $v_{n+1} \ge v_n$.

3. La suite (v_n) est croissante.

Exercice 35.

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = 2x^3 - 2x^2 + x - 2.$$

Soit (u_n) la suite définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$.

- 1. Déterminer f'(x) puis étudier les variations de f.
- **2. a.** Justifier que $u_1 = -1$.
 - **b.** Montrer par récurrence que, pour tout entier naturel *n*,

$$u_{n+1} \leq u_n$$
.

Exercice 35.

1. $f'(x) = 6x^2 - 4x + 1$. Le discriminant est -8. Le coefficient dominant est positif, donc f' est toujours positif: la fonction f est strictement croissante sur \mathbb{R} .

2.a $u_1 = f(u_0) = f(1) = -1$.

b. Initialisation : $-1 \le 1$ donc $u_1 \le u_0$.

Hérédité : soit un entier naturel n tel que $u_{n+1} \le u_n$.

$$u_{n+2} = f(u_{n+1}) \le f(u_n)$$

car f est croissante. Donc $u_{n+2} \le u_{n+1}$.

Conclusion : pour tout entier naturel n, $u_{n+1} \le u_n$.

c. La suite (u_n) est décroissante.

Exercice 36.

Soit (u_n) la suite définie par $u_0 = 0.7$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1+2u_n}.$$

1. Soit f la fonction définie sur $[0, +\infty[$ par

$$f(x) = \frac{3x}{1+2x}.$$

- **a.** Étudier les variations de f sur $[0, +\infty[$.
- **b.** En déduire que si $x \in [0, 1]$, alors $f(x) \in [0, 1]$.
- **2.** Démontrer que, pour tout entier naturel n,

$$0 \le u_n \le 1$$
.

3. Déterminer le sens de variation de la suite (u_n) .

récurrence, fonction, bornée

Exercice 36.

Initialisation : $f'(x) = \frac{3}{(1+2x)^2} > 0$. f est strictement croissante sur $[0; +\infty[$.

La fonction f est croissante sur [0;1] donc si $x \in [0;1]$, alors $f(x) \in [f(0);f(1)]$, soit $f(x) \in [0;1]$.

Initialisation : $u_0 = 0.7$ donc $0 \le u_0 \le 1$.

Hérédité : soit n un entier naturel tel que $0 \le u_n \le 1$. D'après la question précédente, $0 \le f(u_n) \le 1$, soit $0 \le u_{n+1} \le 1$.

Conclusion : pour tout entier naturel n, $0 \le u_n \le 1$.

On a

$$u_{n+1} - u_n = \frac{2u_n(1 - u_n)}{1 + 2u_n}.$$

Or $2u_n \ge 0$, $(1 - u_n) \ge 0$ et $1 + u_n \ge 0$ donc $u_{n+1} - u_n \ge 0$. La suite (u_n) est croissante.

Exercice 37.

Montrer par récurrence que, pour tout entier naturel non nul *n*,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

récurrence, somme

Exercice 37.

Initialisation:

$$\frac{1(1+1)(2\times 1+1)}{6}=1=1^2.$$

Hérédité : soit n un entier naturel non nul tel que

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Alors

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2,$$

soit

$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n(2n+1)+6(n+1))}{6}.$$

Or

$$n(2n+1) + 6(n+1) = 2n^2 + 7n + 6 = (n+2)(2n+3).$$

Ainsi,

$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Conclusion : pour tout entier naturel non nul n,

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

Exercice 38.

Montrer par récurrence que, pour tout entier naturel non nul *n*,

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

récurrence, somme

Exercice 38.

Initialisation:

$$\frac{1^2(1+1)^2}{4} = 1 = 1^3.$$

Hérédité : soit *n* un entier naturel tel que

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Alors

$$\sum_{k=1}^{n+1} k^3 = \sum_{k=1}^{n} k^3 + (n+1)^3 = \frac{n^2(n+1)^2}{4} + (n+1)^3,$$

soit

$$\sum_{k=1}^{n+1} k^3 = \frac{(n+1)^2 (n^2 + 4(n+1))}{4}.$$

Ainsi,

$$\sum_{k=1}^{n+1} k^3 = \frac{(n+1)^2 (n+2)^2}{4}.$$

Conclusion: pour tout entier naturel non nul n,

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}.$$

Exercice 39.

Soit (u_n) la suite définie par $u_1 = 6$ et, pour tout entier naturel n non nul,

$$u_{n+1} = 4u_n - 18$$
.

Démontrer par récurrence que, pour tout entier naturel n non nul, $u_n = 6$.

récurrence

Exercice 39.

Initialisation : $u_1 = 6$.

Hérédité : soit n un entier naturel non nul tel que $u_n = 6$. Alors

$$u_{n+1} = 4u_n - 18 = 4 \times 6 - 18 = 6.$$

Conclusion : pour tout entier naturel non nul n, $u_n = 6$.

Exercice 40.

Soit (v_n) la suite définie par $v_0 = -5$ et, pour tout entier naturel n,

$$v_{n+1} = 3v_n + 8$$
.

Démontrer par récurrence que, pour tout entier naturel $n, v_n \le -4$.

récurrence, majorée

Exercice 40.

Initialisation : $v_0 = -5 \le -4$.

Hérédité : soit n un entier naturel tel que $v_n \le -4$. Alors

$$v_{n+1} = 3v_n + 8 \le 3 \times (-4) + 8$$
,

soit $v_{n+1} \leq -4$.

Conclusion : pour tout entier naturel n, $v_n \le -4$.

Exercice 41.

Soit (u_n) la suite définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = 3u_n + 10n - 5.$$

Démontrer que, pour tout entier naturel n, $u_n = 3^n - 5n$.

récurrence, forme explicite

Exercice 41. —

Initialisation : $3^0 - 5 \times 0 = 1 = u_0$.

Hérédité : soit *n* un entier naturel tel que $u_n = 3^n - 5n$. Alors

$$u_{n+1} = 3u_n + 10n - 5 = 3(3^n - 5n) + 10n - 5 = 3^{n+1} - 5n - 5 = 3^{n+1} - 5(n+1).$$

Conclusion : pour tout entier naturel n, $u_n = 3^n - 5n$.

Exercice 42.

Démontrer que, pour tout entier naturel n,

$$4^n \ge 1 + 3n$$
.

Exercice 42.

Initialisation : $4^0 = 1$ et $1 + 3 \times 0 = 1$, donc $4^0 \ge 1 + 3 \times 0$.

Hérédité : soit un entier naturel n tel que $4^n \ge 1 + 3n$. Alors

$$4^{n+1} = 4^n \times 4 \ge (1+3n) \times 4,$$

soit

$$4^{n+1} \ge 4 + 12n$$
.

Or,

$$1 + 3(n+1) = 4 + 3n \le 4 + 12n$$
.

Donc

$$4^{n+1} \ge 1 + 3(n+1)$$
.

Conclusion : pour tout entier naturel n, $4^n \ge 1 + 3n$.

Exercice 43.

Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_0 = 0$$
 et $u_{n+1} = \sqrt{u_n + 6}$.

- **a.** Montrer par récurrence que pour tout entier naturel $n, u_n \le 3$.
- **b.** On admet que la suite (u_n) est croissante. Est-ce que la suite (u_n) est convergente?

récurrence, majorée, convergence monotone

Exercice 43.

a. Par récurrence sur la propriété P_n : $u_n \le 3$.

Initialisation : on a $u_0 \le 3$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $u_n \le 3$. Alors en ajoutant 6 à chaque membre de l'inégalité puis, par croissance de la fonction racine carrée sur $[0; +\infty[$, on obtient $u_{n+1} \le 3$.

b. La suite est convergente (théorème de convergence monotone).

Exercice 44.

Soit (u_n) la suite définie pour tout entier naturel n par $u_0 = 2$ et

$$u_{n+1} = \frac{2}{3}u_n + 3.$$

- 1. a. À l'aide de la calculatrice, calculer les 10 premiers termes de la suite.
 - **b.** Conjecturer le sens de variation de (u_n) et une majoration de (u_n) .
- **2.** Montrer par récurrence que (u_n) est majorée par 9.
- 3. Montrer que

$$u_{n+1} - u_n = -\frac{1}{3}u_n + 3,$$

puis en déduire le sens de variation de la suite (u_n) .

4. Justifier que la suite (u_n) converge.

récurrence, majorée, convergence monotone

Exercice 44.

1. a. $u_0 = 2$; $u_1 = \frac{13}{3} \approx 4.3$; $u_2 = \frac{53}{9} \approx 5.9$; $u_3 = \frac{187}{27} \approx 6.9$; $u_4 = \frac{617}{81} \approx 7.6$; $u_5 = \frac{1963}{243} \approx 8.1$; $u_6 = \frac{6113}{729} \approx 8.4$; $u_7 = \frac{18787}{2187} \approx 8.6$; $u_8 = \frac{57257}{6561} \approx 8.7$; $u_9 \approx 8.8$.

b. (u_n) semble être croissante et majorée par 9.

2. Par récurrence sur la propriété P_n : $u_n \le 9$.

Initialisation : on a $u_0 \le 9$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $u_n \le 9$. Alors en multipliant chaque membre de l'inégalité par $\frac{2}{3}$ et en ajoutant 3, on obtient $u_{n+1} \le 9$.

3. Pour tout entier naturel *n*,

$$u_{n+1} - u_n = \frac{2}{3}u_n + 3 - u_n = -\frac{1}{3}u_n + 3.$$

Comme $u_n \le 9$, alors $-\frac{1}{3}u_n + 3 \ge 0$ et donc $u_{n+1} - u_n \ge 0$. La suite est croissante.

4. La suite est croissante et majorée, donc elle converge (théorème de convergence monotone).

Exercice 45.

Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_n = n^2 - 2n + 3$$
.

Démontrer que (u_n) est minorée par 2.

récurrence, minorée

Exercice 45.

Pour tout entier naturel n, on a

$$u_n - 2 = (n-1)^2$$
.

Donc, pour tout entier naturel n, $u_n \ge 2$.

Exercice 46.

Soit la suite (v_n) définie par $v_0 = 1$ et, pour tout entier naturel n,

$$v_{n+1} = 0.75 v_n + 2.$$

Démontrer par récurrence que la suite (v_n) est majorée par 8.

récurrence, majorée

Exercice 46.

Par récurrence sur la propriété P_n : $v_n \le 8$.

Initialisation : on a $v_0 \le 8$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $v_n \le 8$. Alors en multipliant chaque membre de l'inégalité par 0,75 et en ajoutant 2, on obtient $v_{n+1} \le 8$.

Exercice 47.

Soit la suite (u_n) définie par $u_0 = 0$ et, pour tout entier naturel n supérieur ou égal à 1,

$$u_n = u_{n-1} + \frac{n}{2^n}.$$

1. Montrer par récurrence que pour tout entier naturel $n \ge 1$,

$$u_n = 2 - \frac{n+2}{2^n}.$$

- **2.** En déduire que la suite (u_n) est majorée.
- **3.** Montrer par récurrence que pour tout entier naturel $n \ge 2$,

$$n+2 \le 2^n$$
.

Exercice 47.

1. Par récurrence sur la propriété P_n : $u_n = 2 - \frac{n+2}{2^n}$.

Initialisation : on a $u_1 = \frac{1}{2}$ et $2 - \frac{1+2}{2^1} = \frac{1}{2}$. P_1 est vraie.

Hérédité : on considère un entier naturel n non nul tel que $u_n = 2 - \frac{n+2}{2^n}$. Alors

$$u_{n+1} = u_n + \frac{n+1}{2^{n+1}} = 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}} = 2 - \frac{(n+1)+2}{2^{n+1}}.$$

Donc P_{n+1} est vraie.

2. Pour tout entier naturel non nul n,

$$u_n-2=-\frac{n+2}{2^n}.$$

Donc $u_n \le 2$.

3. Par récurrence sur la propriété $P_n: n+2 \le 2^n$.

Initialisation : on a 2 + 2 = 4 et $2^2 = 4$. P_2 est vraie.

Hérédité: on considère un entier naturel n supérieur ou égal à 2 tel que $n+2 \le 2^n$. Alors

$$2n+4 \le 2^{n+1}$$
.

Or $n+3 \le 2n+4$. Donc P_{n+1} est vraie.

4. Pour tout entier *n* supérieur ou égal à 2,

$$\frac{n+2}{2^n} \le 1.$$

Donc, pour tout entier naturel n supérieur ou égal à 2, $u_n \ge 1$. Or $u_0 = 0$ et $u_1 = \frac{1}{2}$, donc la suite est minorée par 0.

Exercice 48.

Soit la suite (u_n) définie par $u_0 = -2$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{1}{2}u_n + 1.$$

- 1. Démontrer par récurrence que cette suite est majorée par 2.
- **2.** En déduire que la suite (u_n) est croissante.
- **3.** Conclure quant à la convergence de la suite (u_n) .

récurrence, majorée, croissante, convergence monotone

Exercice 48.

1. Par récurrence sur la propriété P_n : $u_n \le 2$.

Initialisation : on a $u_0 \le 2$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $u_n \le 2$. Alors, en divisant chaque membre de l'inégalité par 2 et en ajoutant 1, on obtient $u_{n+1} \le 2$.

2. Pour tout entier naturel *n*,

$$u_{n+1} - u_n = -\frac{1}{2}u_n + 1.$$

Donc, comme pour tout entier naturel n, $u_n \le 2$, alors $u_{n+1} - u_n \ge 0$. La suite est croissante.

3. La suite est croissante et majorée, donc elle converge (théorème de convergence monotone).

Exercice 49.

Soit la suite (u_n) définie par $u_0 = 2020$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{u_n}$$
.

- 1. Démontrer par récurrence que cette suite est minorée par 1.
- **2.** Démontrer que la suite (u_n) est décroissante.
- **3.** Conclure quant à la convergence de la suite (u_n) .
- **4.** Conjecturer avec une calculatrice la limite de la suite (u_n) (démontrer aussi cette conjecture).

récurrence, minorée, décroissante, convergence monotone, point fixe

Exercice 49.

1. Par récurrence sur la propriété P_n : $u_n \ge 1$.

Initialisation : on a $u_0 \ge 1$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $u_n \ge 1$. Alors, en utilisant la croissance de la fonction racine carrée sur l'ensemble des réels positifs, on obtient $u_{n+1} \ge 1$.

2. Pour tout entier naturel n,

$$u_{n+1} - u_n = \sqrt{u_n} - u_n = \sqrt{u_n} (1 - \sqrt{u_n}).$$

Donc $u_{n+1} - u_n \le 0$ et la suite est décroissante.

- 3. La suite est décroissante et minorée, donc elle converge.
- 4. On conjecture une limite égale à 1.

Exercice 50

Soit la suite (u_n) définie par $u_0 = 1.8$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{2}{3 - u_n}.$$

- 1. Démontrer par récurrence que cette suite est bornée par 1 et 2.
- **2.** Démontrer par récurrence que la suite (u_n) est décroissante.
- **3.** Conclure quant à la convergence de la suite (u_n) .
- **4.** Déterminer la limite de la suite (u_n) .

récurrence, bornée, convergence monotone, point fixe

Exercice 50.

1. Par récurrence sur la propriété P_n : $1 \le u_n \le 2$.

Initialisation : on a $1 \le u_0 \le 2$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $1 \le u_n \le 2$. Alors $1 \le 3 - u_n \le 2$, donc

$$\frac{2}{2} \le \frac{2}{3 - u_n} \le \frac{2}{1}.$$

On obtient $1 \le u_{n+1} \le 2$.

2. La fonction f est dérivable sur [0;3[comme quotient de fonctions dérivables dont le dénominateur ne s'annule jamais et sa dérivée est négative. Donc la fonction f est décroissante sur [0;3[. Par récurrence sur la propriété P_n : $u_{n+1} \le u_n$.

Initialisation : on a $u_1 = \frac{5}{3}$ et $u_0 = 1,8$. P_0 est vraie.

Hérédité : on considère un entier naturel n tel que $u_{n+1} \le u_n$. Comme $0 \le u_{n+1} \le u_n < 3$, alors par décroissance de la fonction f sur [0;3[, on obtient $f(u_{n+1}) \le f(u_n)$. Donc $u_{n+2} \le u_{n+1}$ et P_{n+1} est vraie.

- 3. La suite est minorée et décroissante, donc elle converge.
- **4.** On cherche ℓ tel que :

$$\ell = \frac{2}{3 - \ell} \iff \ell(3 - \ell) = 2$$
$$-\ell^2 + 3\ell - 2 = 0.$$

Son discriminant vaut 1, donc:

$$\ell_1 = \frac{-3 - \sqrt{1}}{-2} = 2, \qquad \ell_2 = \frac{-3 + \sqrt{1}}{-2} = 1.$$

Or, pour tout n, (u_n) est décroissante et $u_0 = 1, 8$. Donc $\ell = 1$.

$$\lim_{n\to+\infty}u_n=1.$$

Exercice 51.

Soit (u_n) la suite définie pour tout entier naturel n par :

$$u_0 = \frac{1}{2}$$
 et $u_{n+1} = \frac{3u_n}{1 + 2u_n}$.

- 1. On considère la fonction f définie sur l'ensemble des réels positifs par $f(x) = \frac{3x}{1+2x}$. Dresser le tableau de variation de f sur son ensemble de définition.
- 2. **a.** Montrer par récurrence que pour tout entier naturel n, on a $0 < u_n < 1$.
 - **b.** Étudier le sens de variation de la suite (u_n) .
- 3. En déduire que la suite (u_n) est convergente.
- 4. Montrer que pour tout entier naturel n,

$$u_n = \frac{3^n}{3^n + 1},$$

et en déduire la limite de la suite (u_n) .

récurrence, fonction, bornée, convergence monotone, forme explicite

Exercice 51.

- 1. f est dérivable sur l'ensemble des réels positifs et pour tout réel $x \ge 0$, $f'(x) = \frac{3}{(1+2x)^2} > 0$. Donc f est strictement croissante sur l'ensemble des réels positifs avec f(0) = 0 et $\lim_{x \to +\infty} f(x) = \frac{3}{2}$.
- **2.a.** Par récurrence sur la propriété P_n : $0 < u_n < 1$.

Initialisation : on a $0 < u_0 < 1$. P_0 est vraie.

Hérédité : On considère un entier naturel n tel que $0 < u_n < 1$. Alors en utilisant la croissance stricte de f sur]0;1[et le fait que f(0)=0 et f(1)=1, on obtient :

$$0 < f(u_n) < 1.$$

Donc P_{n+1} est vraie.

b. On montre que la suite est croissante. Par récurrence sur la propriété $P_n:u_{n+1}\geq u_n$.

Initialisation : on a $u_1 = \frac{3}{4}$ et $u_0 = \frac{1}{2}$. P_0 est vraie.

Hérédité : On considère un entier naturel n tel que $u_{n+1} \ge u_n$. Comme $0 < u_n \le u_{n+1} < 1$, par croissance de f sur]0;1[, on obtient $f(u_n) \le f(u_{n+1})$. Donc $u_{n+2} \le u_{n+1}$ et P_{n+1} est vraie.

3. La suite est croissante et majorée donc elle converge.

4. Par récurrence sur la propriété P_n : $u_n = \frac{3^n}{3^n + 1}$.

Initialisation : on a $u_0 = \frac{1}{2}$ et $\frac{3^0}{3^0 + 1} = \frac{1}{2}$. P_0 est vraie.

Hérédité : On considère un entier naturel n tel que $u_n = \frac{3^n}{3^n + 1}$. Alors :

$$u_{n+1} = \frac{3u_n}{1 + 2u_n} = \frac{3 \cdot \frac{3^n}{3^n + 1}}{1 + 2 \cdot \frac{3^n}{3^n + 1}} = \frac{3^{n+1}}{3^{n+1} + 1}.$$

Donc P_{n+1} est vraie. La suite converge vers 1.

Exercice 52.

1. Montrer que la suite (u_n) définie pour tout entier naturel n par

$$u_n = 2n^2 + 4n - 3$$

est minorée par -5.

2. Montrer que la suite (v_n) définie par $v_0 = 0$ et, pour tout entier naturel n,

$$v_{n+1} = \sqrt{\frac{1}{2} \, v_n^2 + 8}$$

est majorée par 8.

récurrence, majorée, minorée

Exercice 52.

1. Pour tout entier naturel *n*,

$$u_n - (-5) = 2(n+1)^2$$

donc $u_n \ge -5$.

2. Par récurrence :

Initialisation : $v_0 = 0$ donc $v_0 \le 8$. P_0 est vraie.

Hérédité: on considère un entier naturel n tel que $v_n \le 8$. Comme $v_n \ge 0$,

$$0 \le v_n^2 \le 64$$
 donc $0 \le \frac{1}{2}v_n^2 + 8 \le 40$.

Donc

$$\sqrt{\frac{1}{2}v_n^2 + 8} \le \sqrt{40}.$$

Or $\sqrt{40} \approx 6.3$. Donc $v_{n+1} \le 8$.

Exercice 53.

Fin 2020, un club de rugby comptait 7000 abonnés. À la fin de chaque année, le club constate que 20% des abonnés ne se réabonnent pas et que $4\,000$ nouveaux abonnés arrivent. On note a_n le nombre d'abonnés à la fin de l'année 2020+n.

1. Préciser a_0 et expliquer pourquoi, pour tout entier naturel n,

$$a_{n+1} = 0.80 a_n + 4000.$$

- 2. Démontrer que la suite (a_n) est majorée par 20000.
- 3. Démontrer que la suite (a_n) est croissante.
- 4. En déduire la convergence de la suite (a_n) .

récurrence, croissante, convergence monotone

Exercice 53.

- 1. $a_0 = 7000.80\%$ des abonnés de l'année 2020 + n dont le nombre est noté a_n se réabonnent $(0,8a_n)$ et 4000 nouveaux abonnés arrivent (+4000).
- **2.** Par récurrence sur la propriété P_n : $a_n \le 20\,000$.

Initialisation : $a_0 = 7000$ donc $a_0 \le 20000$. P_0 est vraie.

Hérédité : On considère un entier naturel n tel que $a_n \le 20\,000$. Alors :

$$0.8a_n + 4000 \le 0.8 \times 20000 + 4000.$$

Donc $a_{n+1} \le 20000$.

3. Pour tout entier naturel *n*,

$$a_{n+1} - a_n = -0.2a_n + 4000.$$

Or $a_n \le 20\,000$. Donc $a_{n+1} - a_n \ge 0$. La suite est croissante.

4. La suite est croissante et majorée donc elle converge (théorème de convergence monotone).

Exercice 54.

Soit (u_n) la suite définie par $u_0 = 0.5$ et, pour tout entier naturel $n \in \mathbb{N}$, par $u_{n+1} = f(u_n)$ avec f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 2x$.

- **1.** Étudier les variations de la fonction f.
- **2.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le 1$.
- **3.** En déduire que la suite (u_n) est convergente.
- **4.** On admet que $\ell = f(\ell)$. Déterminer la limite de la suite (u_n) .

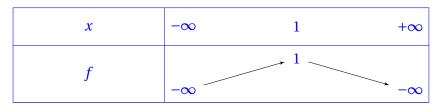
 $r\'ecurrence, fonction, croissante, convergence\ monotone,\ point\ fixe$

Exercice 54.

1. f est un polynôme du second degré. On a :

$$\alpha = -\frac{b}{2a} = -\frac{2}{2 \times (-1)} = 1.$$

$$\beta = f(\alpha) = 1.$$



2. Pour tout entier naturel $n \in \mathbb{N}$, on considère la propriété $P_n : 0 \le u_n < u_{n+1} \le 1$.

Initialisation : pour n = 0, $u_0 = 0.5$ et

$$u_1 = -0.5^2 + 2 \times 0.5 = 0.75.$$

Donc $0 \le u_0 < u_1 \le 1$. La propriété est vraie au rang 0.

Hérédité : On considère un entier naturel n tel que P_n est vraie, c.-à-d.

$$0 \le u_n < u_{n+1} \le 1$$
.

Or f est strictement croissante sur [0;1]. Donc :

$$f(0) \le f(u_n) < f(u_{n+1}) \le f(1)$$
.

Ce qui donne:

$$0 \le u_{n+1} < u_{n+2} \le 1$$
.

Donc P_{n+1} est vraie.

Conclusion : P_n est vraie pour tout $n \in \mathbb{N}$, donc

$$0 \le u_n < u_{n+1} \le 1$$
.

- 3. La suite (u_n) est strictement croissante et majorée par 1. Elle converge.
- **4.** On cherche ℓ tel que $\ell = f(\ell)$:

$$\ell = -\ell^2 + 2\ell \iff \ell^2 - \ell = 0 \iff \ell(\ell - 1) = 0.$$

Donc $\ell = 0$ ou $\ell = 1$.

Comme $u_0 = 0.5$ et la suite est croissante, $\ell \ge 0.5$. Donc $\ell = 1$.

$$\lim_{n\to+\infty}u_n=1.$$

Exercice 55.

Soit f la fonction définie sur [0;4] par

$$f(x) = \frac{2+3x}{4+x}.$$

Soit (u_n) la suite définie par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. On admet que la suite est bien définie.

- **1.** Calculer u_1 .
- **2.** Montrer que la fonction f est croissante sur [0;4].
- **3.** Montrer que pour tout $n \in \mathbb{N}$, $1 \le u_{n+1} \le u_n \le 3$.
- **4. a.** Montrer que la suite (u_n) est convergente.
 - **b.** On admet que $\ell = f(\ell)$. En déduire la valeur de ℓ .

récurrence, fonction, croissante, convergence monotone, point fixe

Exercice 55.

1.

$$u_1 = f(u_0) = \frac{2+3\times3}{4+3} = \frac{11}{7}.$$

2. f est dérivable sur [0;4] et

$$f'(x) = \frac{3(4+x) - (2+3x)}{(4+x)^2} = \frac{10}{(4+x)^2} > 0.$$

Donc f est strictement croissante sur [0;4].

3. Pour tout $n \in \mathbb{N}$, on considère la propriété $P_n : 1 \le u_{n+1} \le u_n \le 3$.

Initialisation : pour n = 0, $u_0 = 3$ et

$$u_1 = \frac{11}{7}$$
.

Donc $1 \le u_1 \le u_0 \le 3$. La propriété est vraie au rang 0.

Hérédité : On considère un entier naturel n tel que P_n est vraie, soit :

$$1 \le u_{n+1} \le u_n \le 3$$
.

Comme f est croissante sur [0;4], on a:

$$f(1) \le f(u_{n+1}) \le f(u_n) \le f(3)$$
.

Ainsi:

$$1 \le u_{n+2} \le \frac{11}{7} \le 3.$$

Donc P_{n+1} est vraie.

Conclusion : pour tout $n \in \mathbb{N}$,

$$1 \le u_{n+1} \le u_n \le 3$$
.

3. La suite (u_n) est strictement décroissante et minorée par 1. Elle converge.

4. On cherche ℓ tel que $\ell = f(\ell)$:

$$\ell = \frac{2+3\ell}{4+\ell} \iff \ell(4+\ell) = 2+3\ell$$

$$\ell^2 + \ell - 2 = 0.$$

Son discriminant vaut 9, donc:

$$\ell_1 = \frac{-1 - \sqrt{9}}{2} = -2, \qquad \ell_2 = \frac{-1 + \sqrt{9}}{2} = 1.$$

Or, pour tout n, $1 \le u_n \le 3$. Donc $\ell = 1$.

$$\lim_{n\to+\infty}u_n=1.$$

Exercice 56.

Soit (u_n) la suite définie par $u_0 = 1$, $u_1 = 2$ et pour tout $n \in \mathbb{N}$,

$$u_{n+2} = a u_{n+1} + b u_n.$$

A Dans cette partie, on suppose que a = 4.5 et b = -2.

- **1.** Calculer la valeur de u_2 .
- **2.** Résoudre l'équation $x^2 = ax + b$. On notera x_1 et x_2 les deux solutions de l'équation.
- **3.** On admet que pour tout $n \in \mathbb{N}$,

$$u_n = \lambda x_1^n + \mu x_2^n.$$

- **a.** Déterminer les valeurs de λ et μ .
- **b.** Déterminer la limite de la suite (u_n) .
- **B** Dans cette partie, on suppose que a = 10 et b = -25.
 - 1. Calculer la valeur de u_2 .
 - **2.** Résoudre l'équation $x^2 = ax + b$. On notera x_0 l'unique solution de l'équation.

EXERCICES

3. On admet que pour tout $n \in \mathbb{N}$,

$$u_n = \lambda x_0^n + \mu n x_0^n.$$

- **a.** Déterminer les valeurs de λ et μ .
- **b.** Déterminer la limite de la suite (u_n) .

récurrence double

Exercice 56.

A On suppose que a = 4.5 et b = -2.

- 1. On a $u_2 = au_1 + bu_0 = 4.5 \times 2 2 \times 1 = 9 2 = 7$.
- **2.** L'équation à résoudre est $x^2 = ax + b \iff x^2 4.5x + 2 = 0$. On calcule le discriminant : $\Delta = 4.5^2 4 \times 1 \times 2 = 20.25 8 = 12.25 = 3.5^2$. Les solutions sont donc

$$x_1 = \frac{4,5-3,5}{2} = \frac{1}{2}, \qquad x_2 = \frac{4,5+3,5}{2} = \frac{8}{2} = 4.$$

3. On admet que pour tout $n \in \mathbb{N}$,

$$u_n = \lambda x_1^n + \mu x_2^n = \lambda \left(\frac{1}{2}\right)^n + \mu 4^n.$$

Pour déterminer λ et μ , on utilise les conditions initiales.

Pour n = 0: $u_0 = 1 = \lambda + \mu$.

Pour n = 1: $u_1 = 2 = \lambda(\frac{1}{2}) + 4\mu$.

On résout le système

$$\begin{cases} \lambda + \mu = 1, \\ \frac{\lambda}{2} + 4\mu = 2. \end{cases}$$

De la première équation, $\lambda = 1 - \mu$. On remplace dans la seconde :

$$\frac{1-\mu}{2}+4\mu=2$$

Donc
$$\frac{7}{2}\mu = 2 - \frac{1}{2} = \frac{3}{2} \iff \mu = \frac{3}{7}, \quad \lambda = 1 - \frac{3}{7} = \frac{4}{7}.$$

Ainsi, pour tout $n \in \mathbb{N}$,

$$u_n = \frac{4}{7} \left(\frac{1}{2} \right)^n + \frac{3}{7} 4^n.$$

- **a.** Les valeurs de λ et μ sont donc $\lambda = \frac{4}{7}$, $\mu = \frac{3}{7}$.
- **b.** Comme $\left(\frac{1}{2}\right)^n \to 0$ et $4^n \to +\infty$ lorsque $n \to +\infty$, et que $\frac{3}{7} > 0$, on obtient $u_n \to +\infty$. La suite (u_n) diverge vers $+\infty$.
- **B** On suppose que a = 10 et b = -25.
 - 1. On a $u_2 = au_1 + bu_0 = 10 \times 2 25 \times 1 = 20 25 = -5$.
 - **2.** L'équation à résoudre est $x^2 = ax + b \iff x^2 = 10x 25 \iff x^2 10x + 25 = 0$. On reconnaît $x^2 10x + 25 = (x 5)^2$, donc l'unique solution est $x_0 = 5$.
 - **3.** On admet que pour tout $n \in \mathbb{N}$, $u_n = \lambda x_0^n + \mu n x_0^n = (\lambda + \mu n) 5^n$. Pour déterminer λ et μ , on utilise les conditions initiales.

Pour
$$n = 0$$
: $u_0 = 1 = (\lambda + 0)5^0 = \lambda$, d'où $\lambda = 1$.

Pour
$$n = 1$$
: $u_1 = 2 = (\lambda + \mu) \cdot 5 = (1 + \mu) \cdot 5$, $\iff 1 + \mu = \frac{2}{5}$, $\iff \mu = \frac{2}{5} - 1 = -\frac{3}{5}$.

Ainsi, pour tout $n \in \mathbb{N}$, $u_n = \left(1 - \frac{3}{5}n\right)5^n$.

a. Les valeurs de λ et μ sont donc $\lambda = 1$, $\mu = -\frac{3}{\pi}$.

b. Lorsque $n \to +\infty$, on a $5^n \to +\infty$ et $1 - \frac{3}{5}n \to -\infty$. Le produit $\left(1 - \frac{3}{5}n\right)5^n$ tend donc vers $-\infty$. Ainsi, $u_n \longrightarrow -\infty$. La suite (u_n) diverge vers $-\infty$.

Exercice 57.

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 1 \\ u_1 = -5 \\ \forall n \in \mathbb{N}, \ u_{n+2} = 5u_{n+1} - 6u_n \end{cases}$$

Démontrer que, pour tout entier naturel *n*, on a :

$$u_n = 8 \times 2^n - 7 \times 3^n.$$

récurrence double

Exercice 57.

Par double récurrence sur la propriété P_n : $u_n = 8 \times 2^n - 7 \times 3^n$.

Initialisation : $a_0 = 1 = 8 \times 2^0 - 7 \times 3^0$ et $a_1 = -5 = 8 \times 2^1 - 7 \times 3^1$ donc P_0 et P_1 sont vraies.

Hérédité : On considère un entier naturel n tel que P_n et P_{n+1} soient vrai. Démontrons alors que P_{n+2} est vraie:

$$u_{n+2} = 5u_{n+1} - 6u_n = 5 \times (8 \times 2^{n+1} - 7 \times 3^{n+1}) - 6 \times (8 \times 2^n - 7 \times 3^n)$$

$$= 40 \times 2^{n+1} - 35 \times 3^{n+1} - 48 \times 2^n + 42 \times 3^n$$

$$= 20 \times 2^{n+2} - 35 \times 3^{n+1} - 12 \times 2^{n+2} + 14 \times 3^{n+1}$$

$$= 8 \times 2^{n+2} - 21 \times 3^{n+1} = 8 \times 2^{n+2} - 7 \times 3^{n+2}$$

Donc $u_n = 8 \times 2^n - 7 \times 3^n$.

Exercice 58.

On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 0 \\ u_1 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+2} = u_{n+1} + u_n \end{cases}$$

Démontrer que : pour tout entier naturel n,

$$u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

récurrence double

Exercice 58.

Par double récurrence sur la propriété $P_n: u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$. **Initialisation:** $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^0 - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^0 = 0 = u_0$ et $\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^1 - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^1 = 1 = u_1$ donc P_0 et P_1 sont vraies.

Hérédité : On considère un entier naturel n tel que P_n et P_{n+1} soient vrai. Démontrons alors que P_{n+2} est vraie:

$$u_{n+2} = u_{n+1} + u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} + \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

$$= \left(\frac{1+\sqrt{5}}{2}\right)^n \left(\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)\right) - \left(\frac{1-\sqrt{5}}{2}\right)^n \left(\frac{1}{\sqrt{5}} + \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)\right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n \left(1 + \left(\frac{1+\sqrt{5}}{2}\right)\right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n \left(1 + \left(\frac{1-\sqrt{5}}{2}\right)\right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n \left(\frac{3+\sqrt{5}}{2}\right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n \left(\frac{3-\sqrt{5}}{2}\right)$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n \left(\frac{3+\sqrt{5}}{2}\right) - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n \left(\frac{3-\sqrt{5}}{2}\right)$$

or $\left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{1+2\sqrt{5}+5}{4} = \frac{6+2\sqrt{5}}{4} = \frac{3+\sqrt{5}}{2}$ et $\left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{3-\sqrt{5}}{2}$ Donc

$$u_{n+2} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \left(\frac{1+\sqrt{5}}{2} \right)^2 - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n \left(\frac{1-\sqrt{5}}{2} \right)^2$$
$$u_{n+2} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+2}$$

Donc $u_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$.